Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomacromolecules ; 23(8): 3359-3370, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35900922

RESUMO

A green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed in vitro antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In vitro, they were able to reduce oxidative stress and inhibit the production of reactive oxygen species by neutrophils and inflammatory cytokines by macrophages. The anti-inflammatory effect observed was related to their antioxidant activity, especially in the case of neutrophils. The particles can thus be especially advantageous as active components of biomaterials modulating the early stages of inflammation. In addition to the immunomodulatory effect, the presence of intrinsically conducting polyaniline can impart cell-instructive properties to the particles. The approach to particle synthesis that we employed─an original one using environmentally friendly and biocompatible horseradish peroxidase─represents a smart way of preparing conducting particles with unique properties, which can be further modified by the stabilizers used.


Assuntos
Compostos de Anilina , Antioxidantes , Compostos de Anilina/química , Antioxidantes/farmacologia , Catálise , Peroxidase do Rábano Silvestre , Polimerização
3.
Chemosphere ; 286(Pt 3): 131941, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426283

RESUMO

Recently, the engineering of alternative adsorbents with better functional and sorbing ability towards the purification of wastewaters has received much attention from the scientific community. Currently polymers, in particular, are regarded as attractive soft materials in the field of environmental remediation due to their several unique properties. In this regard, the synthesis method is key point to fabricate polymer-based adsorbent with targeted characteristics. In the present work, four polyaniline (PANIs) samples were synthesized by two alternative chemical approaches, a traditional one and an eco-friendly one, and two different dopants were used, HCl and H2SO4, respectively. All PANIs were characterized for their thermal, optical, morphological, and structural properties and their capability to remove simultaneously dyes and heavy metals from water have been investigated. It was deduced that the sorption ability is dependent on the as-synthesized PANI using different procedures and dopants. All the PANIs from traditional method showed high levels of pollutants removal (from 89 to 97%). Even though the materials obtained from the green way are overall less active, H2SO4-doped corresponding polymer showed high sorption capability (75-97%). Finally, the most performing PANIs were selected for recycling tests exhibiting high sorption efficiency retention up to four runs without any regeneration treatment. Most important, the cycling tests were stopped well before the sample sorption limit could be reached.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos de Anilina , Corantes , Água , Poluentes Químicos da Água/análise
4.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499388

RESUMO

Nanotechnology is in the spotlight of therapeutic innovation, with numerous advantages for tumor visualization and eradication. The end goal of the therapeutic use of nanoparticles, however, remains distant due to the limitations of nanoparticles to target cancer tissue. The functionalization of nanosystem surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to tumor cells. Cancer formation and metastasis are accompanied by profound alterations in protein glycosylation. Hence, the detection and targeting of aberrant glycans are of great value in cancer diagnosis and therapy. In this review, we provide a brief update on recent progress targeting aberrant glycosylation by functionalizing nanoparticles with glycan-binding molecules (with a special focus on lectins and anti-glycan antibodies) to improve the efficacy of nanoparticles in cancer targeting, diagnosis, and therapy and outline the challenges and limitations in implementing this approach. We envision that the combination of nanotechnological strategies and cancer-associated glycan targeting could remodel the field of cancer diagnosis and therapy, including immunotherapy.

5.
Materials (Basel) ; 13(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392860

RESUMO

Water remediation from hydrocarbons is crucial to reduce health risks. Numerous costly and, sometimes, sophisticated methods were proposed over the years. Herein, an innovative green procedure for porous polyanilines preparation is reported. Polyaniline (PANI) was synthesized by three different approaches ranging from traditional to more eco-friendly ones. Thermal, optical and morphological features of the resulting materials were investigated along with their surface properties. Finally, PANIs were tested as sorbents for hydrocarbons removal from waterbodies. Although an overall fast and high sorption efficiency is always observed, the effective hydrocarbons abatement performed by 'green' PANIs is particularly welcome in the context of environmental protection. Moreover, the sorption efficiency retention after five-run recycling tests suggests potential applications in wastewater remediation.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32195232

RESUMO

Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles.

7.
Nanomaterials (Basel) ; 10(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121437

RESUMO

Polyaniline (PANI)-materials have recently been proposed for environmental remediation applications thanks to PANI stability and sorption properties. As an alternative to conventional PANI oxidative syntheses, which involve toxic carcinogenic compounds, an eco-friendly procedure was here adopted starting from benign reactants (aniline-dimer and H2O2) and initiated by ultraviolet (UV)-irradiated TiO2. To unlock the full potential of this procedure, we investigated the roles of TiO2 and H2O2 in the nanocomposites synthesis, with the aim of tailoring the properties of the final material to the desired application. The nanocomposites prepared by varying the TiO2:H2O2:aniline-dimer molar ratios were characterized for their thermal, optical, morphological, structural and surface properties. The reaction mechanism was investigated via mass analyses and X-ray photoelectron spectroscopy. The nanocomposites were tested on both methyl orange and hexavalent chromium removal. A fast dye-sorption was achieved also in the presence of interferents and the recovery of the dye was obtained upon eco-friendly conditions. An efficient Cr(VI) abatement was obtained also after consecutive tests and without any regeneration treatment. The fine understanding of the reaction mechanism allowed us to interpret the pollutant-removal performances of the different materials, leading to tailored nanocomposites in terms of maximum sorption and reduction capability upon consecutive tests even in simulated drinking water.

8.
Carbohydr Polym ; 203: 310-321, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318218

RESUMO

Silver nanoparticles (AgNPs) have been intensively investigated in virtue of their optical and antimicrobial properties, although their applications have been limited due to inherent toxicity and to the need of employing harsh chemical reagents for the synthesis. In this work, ulvan, a sulfated polysaccharide extracted from green algae belonging to Ulva armoricana sp., was for the first time investigated and identified as reducing and stabilizing agent for AgNPs synthesis by using milder conditions than those conventionally adopted by chemical methods. The synthesized AgNPs were thoroughly characterized to highlight the structure and the role exerted by ulvan in their synthesis and stabilization. The formation of AgNPs stabilized by a thick ulvan shell was assessed by UV-vis, XRD, TEM, DLS and zeta potential analyses. The developed Ulvan based AgNps showed an IC50 in the range of 10 µg/ml in Balb/3T3 mouse embryo fibroblasts and antimicrobial activity toward both Gram + and Gram - bacteria.

9.
Chem Commun (Camb) ; 54(76): 10702-10705, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30175823

RESUMO

An environmentally benign procedure for the preparation of polyaniline/TiO2 composites is presented. The UV irradiation-induced synthesis leads to materials with good crystallinity and tailored morphology, showing promising sorption and recycle properties in dye removal tests. A reaction mechanism is proposed on the basis of LC-MS and FT-IR investigations.

10.
J Hazard Mater ; 344: 308-315, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29121599

RESUMO

Polyaniline (PANI)-based materials for both removal and sampling of volatile organic compounds (VOCs) from air by rapid adsorption/desorption processes have been developed. The polymer was synthesized in form of emeraldine as both salt and base using different synthetic approaches, a traditional one and a "green" one. VOCs adsorption/desorption efficiency was evaluated for all the materials analyzing the desorbed VOCs fractions by GC/MS technique and obtaining results similar to the presently adopted method employing commercial activated carbon. Most important, in this work it has been demonstrated for the first time that the use of PANI-based sorbents allowed the substitution of the toxic CS2, recommended in official methods, with the less hazardous CH3OH as the VOCs extraction solvent. Moreover, a complete regeneration of the polymers could be realized by a few rapid washing steps. Finally, the best PANI-based material was subjected to recycling tests thereby showing a high adsorption/desorption efficiency retention up to four runs.

11.
Angew Chem Int Ed Engl ; 55(46): 14210-14217, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27624999

RESUMO

Gold catalysis has recently found its first large-scale applications in the chemical industry. This Minireview provides a critical analysis of the success factors and of the main obstacles that had to be overcome on the long way from the discovery to the commercialization of gold catalysts. The insights should be useful to researchers in both academia and industry working on the development of tomorrow's gold catalysts to tackle significant environmental and economic issues.

12.
Molecules ; 21(3): 379, 2016 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-27007358

RESUMO

Upon addition of gold to silicalite-1 pellets (a MFI-type zeolite), the vapor phase oxidation of ethanol could be addressed to acetaldehyde or acetic acid formation. By optimizing the catalyst composition and reaction conditions, the conversion of ethanol could be tuned to acetaldehyde with 97% selectivity at 71% conversion or to acetic acid with 78% selectivity at total conversion. Considering that unloaded silicalite-1 was found to catalyze the dehydration of ethanol to diethylether or ethene, a green approach for the integrated production of four important chemicals is herein presented. This is based on renewable ethanol as a reagent and a modular catalytic process.


Assuntos
Catálise , Etanol/química , Oxirredução , Ácido Acético/química , Etilenos/química , Gases/química , Ouro/química , Silicatos/química , Zeolitas/química
13.
Nanoscale ; 4(24): 7727-34, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23135640

RESUMO

We report the results of a synchrotron-based high-resolution XPS study of the interaction of L-cysteine (Cys) with well-characterized colloidal gold nanoparticles (NPs, typical size 3-4 nm), which were pre-deposited on highly oriented pyrolytic graphite and then brought into contact with the aqueous solution of Cys by drop-casting. By comparison with data previously obtained for Cys deposition on flat Au substrates (single crystals and high quality films), we demonstrate the formation of a strong Cys/NP thiolate bond. The analysis of the line shape and adsorbate-induced Au 4f core level shift, backed by simulations of the NP structure, reveals the interaction of Cys with low-coordinated Au atoms belonging to the NP edge and corners. The analysis of the N 1s core-level indicates that neutral molecules are the most abundant species. The small facet size limits the formation of extended networks of zwitterionic molecules, typical of single crystal surfaces. This study provides a spectroscopic insight into the intense poisoning effect caused by a limited amount of Cys on Au catalysts described in previous reports.


Assuntos
Cisteína/química , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Espectroscopia Fotoeletrônica
14.
Chem Soc Rev ; 41(1): 350-69, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21727977

RESUMO

This critical review aims to update the recent development in the selective oxidation of organic compounds by gold catalysis, highlighting the progress in the last three years. Following the impressive developments in the last decades, several protocols for catalytic oxidation are today available, which are based on the extraordinary properties of gold in terms of catalytic activity, selectivity, reusability and resistance to poisons. Beside many other applications, gold can be recommended for green processes dedicated to fine chemicals, pharmaceuticals and the food industry owing to its recognized bio-compatibility. The collected literature is focused on experiments concerning the oxidation of different chemical groups and could be of interest, in the wide area of organic chemistry, for improving previous processes or for exploring new catalytic pathways (174 references).

15.
Faraday Discuss ; 152: 367-79; discussion 393-413, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22455056

RESUMO

One of the strategic building blocks in organic synthesis is 3-hydroxypropionic acid, which is particularly important for the manufacture of high performance polymers. However, to date, despite many attempts using both biological and chemical routes, no large scale effective process for manufacturing 3-hydroxypropionic acid has been developed. One potentially useful starting point is from allyl alcohol, as this can be obtained in principle from the dehydration of glycerol, thereby presenting a bio-renewable green pathway to this important building block. The catalytic transformation of allyl alcohol to 3-hydroxypropionic acid presents interesting challenges in catalyst design, particularly with respect to the control of selectivity among the products that can be expected, as acrylic acid, acrolein and glyceric acid can also be formed. In this paper, we present a novel eco-sustainable catalytic pathway leading to 3-hydroxypropionic acid, which highlights the outstanding potential of gold-based and bimetallic catalysts in the aerobic oxidation of allyl alcohol.

17.
Chem Soc Rev ; 37(9): 2077-95, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18762847

RESUMO

This critical review covers the recent development of the catalytic properties of gold in the selective oxidation of organic compounds, highlighting the exciting contribution to the art of catalysis. The unique, outstanding properties of nanometre-scale particles of gold, a biocompatible non-toxic metal, have allowed the development of a new generation of stable and selective catalysts for the conversion of many organic feedstocks to valuable chemicals. A critical discussion of the results of different research groups is presented along with attempts to correlate the catalytic properties with catalyst morphology in non-equivalent series of experiments. Particular emphasis has been given to the international efforts towards optimised synthesis of products of industrial appeal such as propylene oxide, vinyl acetate monomer, cyclohexanol/cyclohexanone, gluconic acid and glyceric acid (168 references).

18.
ChemSusChem ; 1(10): 809-12, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18773410

RESUMO

The addition of glycerol, a by-product of biodiesel manufacturing, to cement eases its grinding and handling while considerably enhancing the strength of the resulting concrete. The benefits of using bioglycerol are significant both for the environment and for the concrete and biodiesel industries. The advantages for industry derive from having a single, readily available material that offers all three major technical improvements required of cement additives, namely enhanced concrete strength, and grinding and handling aids for cement, while the environmental impact is eased by using bioglycerol instead of ethylene glycol and hydroxyamines that are presently used as major components of cement additives.


Assuntos
Materiais de Construção , Glicerol/química , Indústrias , Fontes de Energia Bioelétrica , Força Compressiva , Materiais de Construção/normas , Indústrias/economia , Indústrias/normas , Indústrias/tendências , Teste de Materiais , Tamanho da Partícula
19.
Angew Chem Int Ed Engl ; 46(24): 4434-40, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17471485

RESUMO

Today, industrial plants that produce glycerol are closing down and others are opening that use glycerol as a raw material, owing to the large surplus of glycerol formed as a by-product during the production of biodiesel. Research efforts to find new applications of glycerol as a low-cost feedstock for functional derivatives have led to the introduction of a number of selective processes for converting glycerol into commercially valued products. This Minireview describes a selection of such achievements and shows how glycerol will be a central raw material in future chemical industries.


Assuntos
Recuperação e Remediação Ambiental/tendências , Glicerol/química , Resíduos Industriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...